FEATURES

- Current Limit Protection
- I/O Isolation, 3750 V $_{\text {RMS }}$
- Typical $R_{\text {ON }} 10 \Omega$
- Load Voltage 200 V
- Load Current 200 mA
- High Surge Capability
- Linear, AC/DC Operation
- Clean Bounce Free Switching
- Low Power Consumption
- SMD Lead Available on Tape and Reel

AGENCY APPROVALS

- UL-File No. E52744
- CSA-Certification 093751
- BSI

APPLICATIONS

- General Telecom Switching
- On/off Hook Control
- Ring Delay
- Dial Pulse
- Ground Start
- Ground Fault Protection
- Instrumentation
- Industrial Controls

DESCRIPTION

The LH1512 relays contain normally open and normally closed switches that can be used independently as a 1 Form A and 1 Form B relay, or when used together, as a 1 Form C relay. The relays are constructed as a mult.chip hybrid device. Actuation control is via an Infrared LED. The output switch is a combination of a photodiode array with MOSFET switches and control circuity.

Part Identification

Part Number	Description
LH1512BB	8-pin DIP, Tubes
LH1512BAC	8-pin SMD, Gullwing, Tubes
LH1512BACTR	8-pin SMD, Gullwing, Tape and Reel

Recommended Operating Conditions

Absolute Maximum Ratings, $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to maximum rating conditions for extended periods can adversely affect device reliability.

Pin Soldering Temperature, $\mathrm{t}=10 \mathrm{~s}$ max, $T_{\mathrm{S}} \ldots \ldots . ~ 260^{\circ} \mathrm{C}$ Input/Output Isolation Test Voltage,

Pole-to-Pole Isolation Voltage (S1 to S2)*
(dry air, dust free, at sea level) ... 1600 V
LED Continuous Forward Current, I_{F}... 50 mA

Continuous dc Load Current, I_{L}
(Form C Operation) \qquad
Peak Load Current, IP
(t=100 ms) Form A ... \dagger
(single shot) Form B ... 400 mA
Output Power Dissipation (continuous), $P_{\text {DISS }} \ldots \ldots . ~ 600 ~ m W ~$

* Breakdown occurs between the output pins external to the package.
\dagger Refer to Current Limit Performance Application Note for a discussion on relay operation during transient currents.

Electrical Characteristics, $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

Parameter	Sym.	Min.	Typ.	Max.	Units	Test Conditions
Input						
LED Forward Current for Switch Turn-on (NO)	$I_{\text {Fon }}$	-	0.6	2.0	mA	$I_{\mathrm{L}}=100 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms}$
LED Forward Current for Switch Turn-off (NO)	$I_{\text {Foff }}$	0.2	0.5	-	mA	$V_{\mathrm{L}}= \pm 150 \mathrm{~V}$
LED Forward Current for Switch Turn-on (NC)	$I_{\text {Fon }}$	0.2	0.9	-	mA	$I_{\mathrm{L}}=100 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms}$
LED Forward Current for Switch Turn-off (NC)	$I_{\text {Foff }}$	-	1.0	2.0	mA	$V_{\mathrm{L}}= \pm 150 \mathrm{~V}$
LED Forward Voltage	V_{F}	1.15	1.26	1.45	V	$I_{\mathrm{F}}=10 \mathrm{~mA}$
Output						
ON-resistance: (NO, NC)	$R_{\text {ON }}$	-	10	15	Ω	$\begin{aligned} & I_{\mathrm{F}}=5.0 \mathrm{~mA}(\mathrm{NO}) \\ & 0 \mathrm{~mA}(\mathrm{NC}) \\ & I_{\mathrm{L}}=50 \mathrm{~mA}(\mathrm{NC}) \end{aligned}$
OFF-resistance: (NO)	$R_{\text {OFF }}$	0.35	5000	-	$\mathrm{G} \Omega$	$I_{\mathrm{F}}=0 \mathrm{~mA}, V_{\mathrm{L}}= \pm 100 \mathrm{~V}$
(NC)		0.1	1.4	-		$I_{\mathrm{F}}=5.0 \mathrm{~mA}, V_{\mathrm{L}}= \pm 100 \mathrm{~V}$
Current Limit (NO)	$I_{\text {LMT }}$	270	360	460	mA	$\begin{aligned} & I_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{t}=5.0 \mathrm{~ms} \\ & V_{\mathrm{L}}= \pm 5.0 \mathrm{~V} \end{aligned}$
Off-state Leakage Current: (NO)	-	-	0.02	1000	nA	$I_{\mathrm{F}}=0 \mathrm{~mA}, V_{\mathrm{L}}= \pm 100 \mathrm{~V}$
(NC)		-	0.07	1.0	$\mu \mathrm{A}$	$I_{\mathrm{F}}=5.0 \mathrm{~mA}, V_{\mathrm{L}}= \pm 100 \mathrm{~V}$
(NO, NC)		-	-	1.0		$\begin{aligned} & I_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{NO}) \\ & I_{\mathrm{F}}=5.0 \mathrm{~mA}, V_{\mathrm{L}}= \pm 200 \mathrm{~V} \end{aligned}$

Parameter	Sym.	Min.	Typ.	Max.	Units	Test Conditions
Output Capacitance: (NO)		-	60	-		$I_{\mathrm{F}}=0 \mathrm{~mA}, V_{\mathrm{L}}=50 \mathrm{~V}$
(NC)		-	60	-		$I_{\mathrm{F}}=5.0 \mathrm{~mA}, V_{\mathrm{L}}=50 \mathrm{~V}$
Transfer						
Input/Output Capacitance	$C_{\text {ISO }}$	-	3.0	-	pF	$V_{\text {ISO }}=1.0 \mathrm{~V}$
Turn-on Time (NO)	$t_{\text {on }}$	-	1.4	3.0	ms	$I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{L}}=50 \mathrm{~mA}$
(NC)		-	1.2	3.0		$I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{L}}=50 \mathrm{~mA}$
Turn-off Time (NO)	$t_{\text {off }}$	-	0.7	3.0	ms	$I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{L}}=50 \mathrm{~mA}$
(NC)		-	2.0	3.0		$I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{L}}=50 \mathrm{~mA}$

Typical Performance Characteristics

